Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 122
Filtrar
1.
Cell Death Dis ; 15(4): 249, 2024 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-38582872

RESUMO

Acyl-CoA binding protein (ACBP) encoded by diazepam binding inhibitor (DBI) is an extracellular inhibitor of autophagy acting on the gamma-aminobutyric acid A receptor (GABAAR) γ2 subunit (GABAARγ2). Here, we show that lipoanabolic diets cause an upregulation of GABAARγ2 protein in liver hepatocytes but not in other major organs. ACBP/DBI inhibition by systemically injected antibodies has been demonstrated to mediate anorexigenic and organ-protective, autophagy-dependent effects. Here, we set out to develop a new strategy for developing ACBP/DBI antagonists. For this, we built a molecular model of the interaction of ACBP/DBI with peptides derived from GABAARγ2. We then validated the interaction between recombinant and native ACBP/DBI protein and a GABAARγ2-derived eicosapeptide (but not its F77I mutant) by pull down experiments or surface plasmon resonance. The GABAARγ2-derived eicosapeptide inhibited the metabolic activation of hepatocytes by recombinant ACBP/DBI protein in vitro. Moreover, the GABAARγ2-derived eicosapeptide (but not its F77I-mutated control) blocked appetite stimulation by recombinant ACBP/DBI in vivo, induced autophagy in the liver, and protected mice against the hepatotoxin concanavalin A. We conclude that peptidomimetics disrupting the interaction between ACBP/DBI and GABAARγ2 might be used as ACBP/DBI antagonists. This strategy might lead to the future development of clinically relevant small molecules of the ACBP/DBI system.


Assuntos
Inibidor da Ligação a Diazepam , Ácido gama-Aminobutírico , Animais , Camundongos , Inibidor da Ligação a Diazepam/farmacologia
3.
Methods Mol Biol ; 2769: 1-13, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315385

RESUMO

Orthotopic models of hepatocellular carcinoma (HCC) consist in the implantation of tumor cells into the liver by direct intrahepatic injection. In this model, tumorigenesis is triggered within the hepatic microenvironment, thus mimicking the metastatic behavior of HCC. Herein, we detail a surgically mediated methodology that allows the reproducible and effective induction of liver-sessile tumors in mice. We enumerate the steps to be followed before and after the surgical procedure, including HCC cell preparation, the quantity of cancer cells to be injected, presurgical preparation of the mice, and finally, postoperative care. The surgical procedure involves laparotomy to expose the liver, injection of cells into the left-lateral hepatic lobe, and closure of the incision with sutures followed by wound clips. We also provide information concerning the subsequent tumor growth follow-up, as well as the application of bioluminescence imaging to monitor tumor development.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Linhagem Celular , Diagnóstico por Imagem , Linhagem Celular Tumoral , Modelos Animais de Doenças , Microambiente Tumoral
4.
Methods Mol Biol ; 2769: 99-108, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315392

RESUMO

Cholangiocarcinoma (CCA) is a malignancy affecting the epithelial cells that line the bile ducts. This cancer shows a poor prognosis and current treatments remain inefficient. Orthotopic CCA mouse models are useful for the development of innovative therapeutic strategies. Here, we describe an orthotopic model of intrahepatic CCA that can be easily induced in mice within 5 weeks at a high incidence. It is achieved by expressing two oncogenes, namely, (i) the intracellular domain of the Notch1 receptor (NICD) and (ii) AKT, in hepatocytes by means of the sleeping beauty transposon system. These plasmid vectors are delivered by hydrodynamic injection into the tail vein. The present chapter also describes how to perform magnetic resonance imaging (MRI) of the livers to visualize intrahepatic CCA nodules.


Assuntos
Neoplasias dos Ductos Biliares , Colangiocarcinoma , Camundongos , Animais , Ductos Biliares Intra-Hepáticos , Neoplasias dos Ductos Biliares/genética , Colangiocarcinoma/genética , Oncogenes/genética , Fígado/patologia
5.
Methods Mol Biol ; 2769: 57-65, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315388

RESUMO

Non-alcoholic steatohepatitis (NASH) is a severe form of non-alcoholic fatty liver disease (NAFLD). Obesity is a known risk factor of NASH, which, in turn, increases the risk of developing cirrhosis (liver scarring) and hepatocellular carcinoma (HCC). In addition to being a potentially life-threatening condition, public health concerns surrounding NASH are amplified by the lack of FDA-approved treatments. Although various preclinical models reflecting both the histopathology and the pathophysiological progression of human NASH exist, most of these models are diet-based and require 6-13 months for NASH symptom manifestation. Here, we describe a simple and rapid-progression model of NASH and NASH-driven HCC in mice. Mice received a western diet equivalent (WD; i.e., a high-fat, high-fructose, and high-cholesterol diet), high-sugar water (23.1 g/L fructose and 18.9 g/L glucose), and weekly intraperitoneal injections of carbon tetrachloride (CCl4) at a dose of 0.2 µL/g of body weight. The resulting phenotype, consisting in liver fibrosis and HCC, appeared within 24 weeks of diet/treatment initiation and presented similar histological and transcriptomic features as human NASH and NASH-driven HCC, thereby supporting the adequacy of this preclinical model for the development and evaluation of drugs that can prevent or reverse these diseases.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Carcinoma Hepatocelular/genética , Tetracloreto de Carbono/toxicidade , Neoplasias Hepáticas/patologia , Dieta Ocidental/efeitos adversos , Modelos Animais de Doenças , Cirrose Hepática/patologia , Frutose , Dieta Hiperlipídica/efeitos adversos , Fígado/patologia , Camundongos Endogâmicos C57BL
6.
Methods Mol Biol ; 2769: 129-141, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315394

RESUMO

Tissue-resident and recruited immune cells are essential mediators of natural and therapy-induced immunosurveillance of liver neoplasia. This idea has been recently reinforced by the clinical approval of immune checkpoint inhibitors for the immunotherapy of hepatocellular carcinoma and cholangiocarcinoma. Such research progress relies on the in-depth characterization of the immune populations that are present in pre-neoplastic and neoplastic hepatic lesions. A convenient technology for advancing along this path is high-dimensional cytometry.In this chapter, we present a protocol to assess the subtype and differentiation state of hepatic lymphocyte populations by multicolor immunofluorescence staining and flow cytometry. We detail the steps required for viability assessment and immune cell phenotyping of single-cell suspensions of liver cells by means of surface and intracellular staining of more than a dozen markers of interest. This protocol does not require prior removal of debris and dead cells and allows to process multiple samples in parallel. The procedure includes the use of a fixative-resistant viability dye that allows cell fixation and permeabilization after cell surface staining and before intracellular staining and data acquisition on a flow cytometer. Moreover, we provide a panel of fluorochrome-labeled antibodies designed for the characterization of lymphocytic subsets that can be adapted to distinct experimental settings. Finally, we present an overview of the post-staining pipeline, including data acquisition on a flow cytometer and tools for post-acquisition analyses.


Assuntos
Neoplasias dos Ductos Biliares , Neoplasias Hepáticas , Humanos , Citometria de Fluxo/métodos , Subpopulações de Linfócitos , Ductos Biliares Intra-Hepáticos
7.
Methods Mol Biol ; 2769: 67-75, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315389

RESUMO

Hepatocellular carcinoma (HCC) is the most common type of liver cancer and the second most common cause of cancer-related death. HCC is associated to chronic diseases such as viral hepatitis, alcoholic, and non-alcoholic fatty liver disease (NAFLD), diabetes mellitus, and obesity, among others. Although pre-clinical models have been investigated to mimic the transition from NAFLD to HCC, they do not accurately reproduce the phenotypic evolution from simple steatosis to steatohepatitis, fibrosis/cirrhosis, and HCC. Hence, these models have failed to demonstrate the influence of diabetes on hepatic carcinogenesis. Here, we report a novel mouse model of HCC triggered by fast-developing diabetes and NAFLD. The first step consists in a single intraperitoneal injection of a low dose of streptozotocin into neonatal C57BL/6J mice to induce type 2 diabetes. In a second step, mice are fed with high-fat diet to accelerate the development of simple steatosis. Continuous high-fat diet exacerbates hepatic fat deposition with increased lobular inflammation (by activation of foam cell-like macrophages) and fibrosis (by activating hepatic stellate cells), two representative pathological traits of steatohepatitis/fibrosis. After 20 weeks, all mice developed multiple HCCs. This model of hepatic carcinogenesis triggered by diabetes mellitus and NAFLD offers the advantage of being rapid and accurately recapitulates the pathogenesis of human HCC without the need of administering hepatic carcinogens.


Assuntos
Carcinoma Hepatocelular , Diabetes Mellitus Tipo 2 , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Humanos , Camundongos , Animais , Carcinoma Hepatocelular/etiologia , Carcinoma Hepatocelular/patologia , Hepatopatia Gordurosa não Alcoólica/etiologia , Hepatopatia Gordurosa não Alcoólica/patologia , Neoplasias Hepáticas/etiologia , Neoplasias Hepáticas/patologia , Estreptozocina , Dieta Hiperlipídica/efeitos adversos , Diabetes Mellitus Tipo 2/patologia , Camundongos Endogâmicos C57BL , Fígado/patologia , Modelos Animais de Doenças , Cirrose Hepática/patologia , Carcinogênese/patologia
8.
Methods Mol Biol ; 2769: 189-198, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315398

RESUMO

The metabolic rearrangements of hepatic metabolism associated with liver cancer are still incompletely understood. There is an ongoing need to identify novel and more efficient diagnostic biomarkers and therapeutic targets based on the metabolic mechanisms of these diseases. In comparison to traditional diagnostic biomarkers, metabolomics is a comprehensive technique for discovering chemical signatures for liver cancer screening, prediction, and earlier diagnosis. Lipids are a large and diverse group of complex biomolecules that are at the heart of liver physiology and play an important role in the development and progression of cancer. In this chapter, we described two detailed protocols for targeted lipids analysis: glycerophospholipids and mono, di, tri-acylglycerides, both by Flow Injection Analysis (FIA) HPLC coupled to a SelexIon/QTRAP 6500+ system. These approaches provide a targeted lipidomic metabolomic signature of dissimilar metabolic disorders affecting liver cancers.


Assuntos
Glicerofosfolipídeos , Neoplasias Hepáticas , Humanos , Metabolômica/métodos , Biomarcadores
9.
Methods Mol Biol ; 2769: 109-128, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315393

RESUMO

In the early stages of liver carcinogenesis, rare hepatocytes and cholangiocytes are transformed into preneoplastic cells, which can progressively acquire a neoplastic phenotype, favored by the failure of natural antitumor immunosurveillance. The detailed study of both hepatic parenchymal (e.g., hepatocytes) and non-parenchymal cells (NPCs), such as immune cells, could help understand the cellular microenvironment surrounding these pre-cancerous and neoplastic lesions.Cultures of primary hepatocytes are of interest in various biomedical research disciplines, serving as an ex vivo model for liver physiology. Obtaining high viability and yield of primary mouse hepatocytes and other liver cell populations is technically challenging, thus limiting their use. In the first section of the current chapter, we introduce a protocol based on the two-step collagenase perfusion technique (by inferior vena cava) to isolate hepatocytes and, to a lower extent, NPCs and detailed the different considerations to take into account for a successful perfusion. The liver is washed by perfusion, hepatocytes are dissociated with collagenase, and different cell populations are separated by centrifugation. Various techniques have been described for the isolation of healthy and malignant hepatocytes; however, the viability and purity of the isolated cells is frequently not satisfactory. Here, we significantly optimized this protocol to reach improved yield and viability of the hepatocytes and concomitantly obtain preserved NPC populations of the liver.Within NPCs, tissue-resident or recruited immune cells are essential actors regulating hepatocarcinogenesis. However, simultaneous isolation of hepatic leukocytes together with other cell types generally yields low immune cell numbers hindering downstream application with these cells. In the second section of this chapter, as opposed to the first section primarily aiming to isolate hepatocytes, we present a tissue dissociation protocol adapted to efficiently recover leukocytes from non-perfused bulk (pre-)cancerous livers. This protocol has been optimized to be operator-friendly and fast compared to other liver processing methods, allowing easy simultaneous sample processing to retrieve hepatic (tumor-infiltrating) immune cells.


Assuntos
Fígado , Lesões Pré-Cancerosas , Camundongos , Animais , Separação Celular/métodos , Hepatócitos , Carcinogênese , Colagenases , Microambiente Tumoral
10.
Methods Mol Biol ; 2769: 199-209, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38315399

RESUMO

Liver cancers are characterized by interindividual and intratumoral heterogeneity, which makes early diagnosis and the development of therapies challenging. Desorption electrospray ionization mass spectrometry (DESI-MS) imaging is a potent and sensitive MS ionization technique for direct, unaltered 2D and 3D imaging of metabolites in complex biological samples. Indeed, DESI gently desorbs and ionizes analyte molecules from the sample surface using an electrospray source of highly charged aqueous spray droplets in ambient conditions. DESI-MS imaging of biological samples allows untargeted analysis and characterization of metabolites in liver cancers to identify new biomarkers of malignancy. In this chapter, we described a detailed protocol using liver cancer samples collected and stored for histopathology examination, either as frozen or as formalin-fixed, paraffin-embedded specimens. Such hepatocellular carcinoma samples can be subjected to DESI-MS analyses, illustrating the capacity of spatially resolved metabolomics to distinguish malignant lesions from adjacent normal liver tissue.


Assuntos
Neoplasias Hepáticas , Espectrometria de Massas por Ionização por Electrospray , Humanos , Espectrometria de Massas por Ionização por Electrospray/métodos , Metabolômica , Neoplasias Hepáticas/diagnóstico por imagem , Biomarcadores
12.
Oncoimmunology ; 12(1): 2240613, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37546695

RESUMO

As long as breast cancer (BC) stays under immunosurveillance, it can be controlled by treatments eliciting anticancer immune responses. However, once BC escapes immunosurveillance, it becomes therapeutically uncontrollable. A paper in the Journal for ImmunoTherapy of Cancer describes a new hormone receptor-positive BC cell line generating incurable tumors in C57BL/6 mice.


Assuntos
Carcinoma , Imunoterapia , Camundongos , Animais , Camundongos Endogâmicos C57BL
13.
Biomacromolecules ; 24(8): 3510-3521, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37531486

RESUMO

The treatment of posterior eye segment diseases through intravitreal injection requires repeated injections of an active molecule, which may be associated with serious side effects and poor patient compliance. One brilliant strategy to overcome these issues is the use of drug-loaded microparticles for sustained release, aiming at reducing the frequency of injections. Therefore, the aim of this work was to assess the safety features of poly(lactic-co-glycolic acid) (PLGA)-based, hyaluronic acid-decorated microparticles loaded with palmitoylethanolamide (PEA), citicoline (CIT), or glial-cell-derived neurotrophic factor (GDNF). Microparticles were prepared by double emulsion-solvent evaporation and fully characterized for their technological features. Microparticles possessed a satisfactory safety profile in vitro on human retinal pigment epithelial (ARPE-19) cells. Interestingly, the administration of free GDNF led to a loss of cell viability, while GDNF sustained release displayed a positive effect in that regard. In vivo results confirmed the safety profile of both empty and loaded microparticles. Overall, the outcomes suggest that the produced microparticles are promising for improving the local administration of neuroprotective molecules. Further studies will be devoted to assess the therapeutic ability of microparticles.

14.
J Immunother Cancer ; 11(6)2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37344100

RESUMO

BACKGROUND: Progress in breast cancer (BC) research relies on the availability of suitable cell lines that can be implanted in immunocompetent laboratory mice. The best studied mouse strain, C57BL/6, is also the only one for which multiple genetic variants are available to facilitate the exploration of the cancer-immunity dialog. Driven by the fact that no hormone receptor-positive (HR+) C57BL/6-derived mammary carcinoma cell lines are available, we decided to establish such cell lines. METHODS: BC was induced in female C57BL/6 mice using a synthetic progesterone analog (medroxyprogesterone acetate, MPA) combined with a DNA damaging agent (7,12-dimethylbenz[a]anthracene, DMBA). Cell lines were established from these tumors and selected for dual (estrogen+progesterone) receptor positivity, as well as transplantability into C57BL/6 immunocompetent females. RESULTS: One cell line, which we called B6BC, fulfilled these criteria and allowed for the establishment of invasive estrogen receptor-positive (ER+) tumors with features of epithelial to mesenchymal transition that were abundantly infiltrated by myeloid immune populations but scarcely by T lymphocytes, as determined by single-nucleus RNA sequencing and high-dimensional leukocyte profiling. Such tumors failed to respond to programmed cell death-1 (PD-1) blockade, but reduced their growth on treatment with ER antagonists, as well as with anthracycline-based chemotherapy, which was not influenced by T-cell depletion. Moreover, B6BC-derived tumors reduced their growth on CD11b blockade, indicating tumor sustainment by myeloid cells. The immune environment and treatment responses recapitulated by B6BC-derived tumors diverged from those of ER+ TS/A cell-derived tumors in BALB/C mice, and of ER- E0771 cell-derived and MPA/DMBA-induced tumors in C57BL/6 mice. CONCLUSIONS: B6BC is the first transplantable HR+ BC cell line derived from C57BL/6 mice and B6BC-derived tumors recapitulate the complex tumor microenvironment of locally advanced HR+ BC naturally resistant to PD-1 immunotherapy.


Assuntos
Carcinoma , Progesterona , Camundongos , Feminino , Animais , Transição Epitelial-Mesenquimal , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Linhagem Celular Tumoral , Microambiente Tumoral
15.
Eur J Sport Sci ; 23(11): 2157-2169, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37161876

RESUMO

Physical activity and nutrition play important roles in preventing adverse health outcomes that accompany aging. It has been shown that high-intensity interval training (HIIT) combined with citrulline (CIT) supplementation can improve physical and functional capacities. The aim of this study was to evaluate serum metabolites following a 12-week HIIT combined or not with CIT in obese older adults, and to correlate the metabolic changes with clinico-biological parameters changes. Eighty-six obese older adults completed a 12-week HIIT program combined with a 10 g daily supplementation of either CIT or placebo (PLA) during a double-blinded randomized interventional trial. Only participants with blood samples at T0 (before the intervention) and/or T12 (after the intervention) were included in our sub-analysis (HIIT-PLA-T0: n = 44 and HIIT-PLA-T12: n = 28; HIIT-CIT-T0: n = 39 and HIIT-CIT-T12: n = 42). Serum samples were analyzed by different liquid or gas phase chromatography methods coupled to mass spectrometry. Among the identified metabolites, 44 changed significantly following the 12-week intervention (Time effect), and 10 of them were more affected when HIIT was combined with CIT (Time × Supp effect). Arginine increased significantly due to the 12-week intervention. Correlation analyses demonstrated that decreased triglyceride (TG) (16:1/18:1/16:0) and aspartic acid significantly correlated with a reduction of adiposity-related parameters (fat mass, leg lean mass, leptin, total triglycerides and low-density lipoprotein). Arginine, TG (16:1/18:1/16:0) and aspartic acid might constitute biomarkers of cardiometabolic health and adiposity. Further studies are needed to confirm these associations and understand the underlying mechanisms.Highlights A 12-week intervention involving high-intensity interval training (HIIT) with or without citrulline (CIT) supplementation induced adaptations in the serum metabolome of obese older adults through significant changes in 44 metabolites.Changes in 23 metabolites were observed when a CIT supplementation was administered along with a 12-week HIIT intervention.TG (16:1/18:1/16:0) correlated with several adiposity parameters including leptin, triglycerides, legs lean mass.Aspartic acid correlated with several adiposity parameters including leptin, LDL cholesterol as well as android, arms and trunk fat mass.


Assuntos
Treinamento Intervalado de Alta Intensidade , Leptina , Humanos , Idoso , Citrulina/farmacologia , Treinamento Intervalado de Alta Intensidade/métodos , Ácido Aspártico , Obesidade/terapia , Suplementos Nutricionais , Arginina , Triglicerídeos , Poliésteres
16.
Cells ; 12(5)2023 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-36899942

RESUMO

The identification of Parkinson's disease (PD) biomarkers has become a main goal for the diagnosis of this neurodegenerative disorder. PD has not only been intrinsically related to neurological problems, but also to a series of alterations in peripheral metabolism. The purpose of this study was to identify metabolic changes in the liver in mouse models of PD with the scope of finding new peripheral biomarkers for PD diagnosis. To achieve this goal, we used mass spectrometry technology to determine the complete metabolomic profile of liver and striatal tissue samples from WT mice, 6-hydroxydopamine-treated mice (idiopathic model) and mice affected by the G2019S-LRRK2 mutation in LRRK2/PARK8 gene (genetic model). This analysis revealed that the metabolism of carbohydrates, nucleotides and nucleosides was similarly altered in the liver from the two PD mouse models. However, long-chain fatty acids, phosphatidylcholine and other related lipid metabolites were only altered in hepatocytes from G2019S-LRRK2 mice. In summary, these results reveal specific differences, mainly in lipid metabolism, between idiopathic and genetic PD models in peripheral tissues and open up new possibilities to better understand the etiology of this neurological disorder.


Assuntos
Doença de Parkinson , Animais , Camundongos , Biomarcadores , Modelos Animais de Doenças , Serina-Treonina Proteína Quinase-2 com Repetições Ricas em Leucina/genética , Lipidômica , Fígado/metabolismo , Metabolômica , Doença de Parkinson/metabolismo
17.
Metabolites ; 13(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-36837817

RESUMO

Physical activity can be effective in preventing some of the adverse effects of aging on health. High-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) are beneficial interventions for the quality of life of obese older individuals. The understanding of all possible metabolic mechanisms underlying these beneficial changes has not yet been established. The aim of this study was to analyze changes in the serum metabolome after 12 weeks of HIIT and MICT in obese older adults. Thirty-eight participants performed either HIIT (n = 26) or MICT (n = 12) three times per week for 12 weeks. Serum metabolites as well as clinical and biological parameters were assessed before and after the 12-week intervention. Among the 364 metabolites and ratio of metabolites identified, 51 metabolites changed significantly following the 12-week intervention. Out of them, 21 significantly changed following HIIT intervention and 18 significantly changed following MICT. Associations with clinical and biological adaptations revealed that changes in acyl-alkyl-phosphatidylcholine (PCae) (22:1) correlated positively with changes in handgrip strength in the HIIT group (r = 0.52, p < 0.01). A negative correlation was also observed between 2-oxoglutaric acid and HOMA-IR (r = -0.44, p < 0.01) when considering both groups together (HIIT and MICT). This metabolite also correlated positively with quantitative insulin-sensitivity check index (QUICKI) in both groups together (r = 0.46, p < 0.01) and the HIIT group (r = 0.51, p < 0.01). Additionally, in the MICT group, fumaric acid was positively correlated with triglyceride levels (r = 0.73, p < 0.01) and acetylcarnitine correlated positively with low-density lipoprotein (LDL) cholesterol (r = 0.81, p < 0.01). These four metabolites might represent potential metabolites of interest concerning muscle strength, glycemic parameters, as well as lipid profile parameters, and hence, for a potential healthy aging. Future studies are needed to confirm the association between these metabolites and a healthy aging.

18.
Aging Cell ; 22(1): e13751, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36510662

RESUMO

Autophagy defects accelerate aging, while stimulation of autophagy decelerates aging. Acyl-coenzyme A binding protein (ACBP), which is encoded by a diazepam-binding inhibitor (DBI), acts as an extracellular feedback regulator of autophagy. As shown here, knockout of the gene coding for the yeast orthologue of ACBP/DBI (ACB1) improves chronological aging, and this effect is reversed by knockout of essential autophagy genes (ATG5, ATG7) but less so by knockout of an essential mitophagy gene (ATG32). In humans, ACBP/DBI levels independently correlate with body mass index (BMI) as well as with chronological age. In still-healthy individuals, we find that high ACBP/DBI levels correlate with future cardiovascular events (such as heart surgery, myocardial infarction, and stroke), an association that is independent of BMI and chronological age, suggesting that ACBP/DBI is indeed a biomarker of "biological" aging. Concurringly, ACBP/DBI plasma concentrations correlate with established cardiovascular risk factors (fasting glucose levels, systolic blood pressure, total free cholesterol, triglycerides), but are inversely correlated with atheroprotective high-density lipoprotein (HDL). In mice, neutralization of ACBP/DBI through a monoclonal antibody attenuates anthracycline-induced cardiotoxicity, which is a model of accelerated heart aging. In conclusion, plasma elevation of ACBP/DBI constitutes a novel biomarker of chronological aging and facets of biological aging with a prognostic value in cardiovascular disease.


Assuntos
Doenças Cardiovasculares , Proteínas de Transporte , Animais , Humanos , Camundongos , Doenças Cardiovasculares/genética , Coenzima A/metabolismo , Inibidor da Ligação a Diazepam/genética , Inibidor da Ligação a Diazepam/metabolismo , Proteínas Nucleares/metabolismo
19.
Cancers (Basel) ; 14(23)2022 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-36497462

RESUMO

(1) Background: Long non-coding RNAs may constitute epigenetic biomarkers for the diagnosis, prognosis, and therapeutic response of a variety of tumors. In this context, we aimed at assessing the diagnostic and prognostic value of the recently described long intergenic non-coding RNA 01087 (LINC01087) in human cancers. (2) Methods: We studied the expression of LINC01087 across 30 oncological indications by interrogating public resources. Data extracted from the TCGA and GTEx databases were exploited to plot receiver operating characteristic curves (ROC) and determine the diagnostic performance of LINC01087. Survival data from TCGA and KM-Plotter directories allowed us to graph Kaplan-Meier curves and evaluate the prognostic value of LINC01087. To investigate the function of LINC01087, gene ontology (GO) annotation and Kyoto Encyclopedia of Gene and Genomes (KEGG) enrichment analyses were performed. Furthermore, interactions between LINC01087 and both miRNA and mRNA were studied by means of bioinformatics tools. (3) Results: LINC01087 was significantly deregulated in 7 out of 30 cancers, showing a predominant upregulation. Notably, it was overexpressed in breast (BC), esophageal (ESCA), and ovarian (OV) cancers, as well as lung squamous cell carcinoma (LUSC), stomach adenocarcinoma (STAD), and uterine carcinosarcoma (UCS). By contrast, LINC01087 displayed downregulation in testicular germ cell tumors (TGCT). ROC curve analyses identified LINC01087 as a potential diagnostic indicator in BC, ESCA, OV, STAD, and TGCT. Moreover, high and low expression of LINC01087 predicted a favorable prognosis in BC and papillary cell carcinoma, respectively. In silico analyses indicated that deregulation of LINC01087 in cancer was associated with a modulation of genes related to ion channel, transporter, and peptide receptor activity. (4) Conclusions: the quantification of an altered abundance of LINC01087 in tissue specimens might be clinically useful for the diagnosis and prognosis of some hormone-related tumors, including BC, OV, and TGCT, as well as other cancer types such as ESCA and STAD. Moreover, our study revealed the potential of LINC01087 (and perhaps other lncRNAs) to regulate neuroactive molecules in cancer.

20.
Proc Natl Acad Sci U S A ; 119(41): e2207344119, 2022 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191214

RESUMO

Acyl-coenzyme A (CoA)-binding protein (ACBP), also known as diazepam-binding inhibitor (DBI), is an extracellular feedback regulator of autophagy. Here, we report that injection of a monoclonal antibody neutralizing ACBP/DBI (α-DBI) protects the murine liver against ischemia/reperfusion damage, intoxication by acetaminophen and concanavalin A, and nonalcoholic steatohepatitis caused by methionine/choline-deficient diet as well as against liver fibrosis induced by bile duct ligation or carbon tetrachloride. α-DBI downregulated proinflammatory and profibrotic genes and upregulated antioxidant defenses and fatty acid oxidation in the liver. The hepatoprotective effects of α-DBI were mimicked by the induction of ACBP/DBI-specific autoantibodies, an inducible Acbp/Dbi knockout or a constitutive Gabrg2F77I mutation that abolishes ACBP/DBI binding to the GABAA receptor. Liver-protective α-DBI effects were lost when autophagy was pharmacologically blocked or genetically inhibited by knockout of Atg4b. Of note, α-DBI also reduced myocardium infarction and lung fibrosis, supporting the contention that it mediates broad organ-protective effects against multiple insults.


Assuntos
Inibidor da Ligação a Diazepam , Receptores de GABA-A , Animais , Camundongos , Acetaminofen , Anticorpos Monoclonais/metabolismo , Antioxidantes , Autoanticorpos/metabolismo , Autofagia , Tetracloreto de Carbono , Proteínas de Transporte/genética , Colina , Coenzima A/metabolismo , Concanavalina A/metabolismo , Diazepam , Inibidor da Ligação a Diazepam/metabolismo , Ácidos Graxos/metabolismo , Fibrose , Inflamação , Metionina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...